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Abstract

Edge-based Machine Learning (ML) has a pivotal role
in revolutionizing smart healthcare by introducing a tan-
gible improvement in the secure and discrete medical data
analysis. This paper presents a novel neural network ar-
chitecture by combining Variable Projections (VP) and
Spiking Neural Networks (SNN). VPs are nonlinearly pa-
rameterized orthogonal projections whose weights have
physical meaning, whereas SNNs are biologically plausi-
ble neural networks that operate on both spatial and tem-
poral information. In the proposed hybrid topology, VP
layer is coupled with spiking layers to encode input space
into a compact and interpretable latent feature space. The
latent space, encoded into spike trails, enables the sub-
sequent SNNs to be trained with a low bandwidth. The
effectiveness of the proposed VPSNN architecture is as-
sessed in binary classification of normal and ventricular
ectopic beats (VEBs) in ECG recordings of the PhysioNet
MIT-BIH Arrhythmia Database. In our experiments, ECG
records are apportioned into balanced training and test
sets with approximately 60/40 ratio. Results show that a
VPSNN variant detects VEBs with an overall classification
accuracy of 97.16%, with a highly shallow topology con-
sisting of only 242 parameters. The compact topology of
VPSNN, makes it a suitable candidate for neuromorphic
computing.

1. Introduction

The large availability of biomedical data allows to de-
velop reliable medical tools for detecting cardiovascular
diseases using data-driven machine learning approaches.
In fact, state-of-the-art deep learning (DL) methods pro-
vide promising results in the classification of various ar-
rhythmia types. On the other hand, in clinical applica-
tions, improving classification accuracy alone is usually
not enough, as physiological interpretation of the results
are also important. Besides the lack of explainability, high
computational complexity is another drawback of the top
performing DL models.

In this paper, we alleviate the previously mentioned

problems by combining variable projections (VP) with
spiking neural networks (SNN). VPs are nonlinearly pa-
rameterized orthogonal projections whose weights have
physical meaning, whereas SNNs are brain-inspired net-
work topologies, which can be implemented with ultra-
high speed and ultra-low energy consumption on neuro-
morphic devices. In order to combine the advantages of
VPs and SNNs, we design a hybrid neural network model
called VPSNN. This architecture is adapted specifically to
ECG data analysis such that the first VP layer servers as
an automatic feature extractor and spike encoder whose
weights represent the positions and the widths of the clin-
ically relevant ECG waveforms (P-QRS-T). The VP layer
constructs a clinically interpretable latent feature space and
is trained together with the subsequent SNN layers, which
are responsible for the feature analysis and the actual clas-
sification of the data.

As a case study, we consider the classification of normal
and ventricular ectopic beats (VEBs) in real ECG record-
ings of the PhysioNet MIT-BIH Arrhythmia Database. Our
experiments show that the proposed VPSNN architecture
can be effectively used for detecting VEBs with an overall
classification accuracy of 97.16%, comparable to the state-
of-the-art. Moreover, due to highly compact topology of
VPSNN, it offers a low computational cost inference abil-
ity suitable for edge computing in clinical applications.

2. Methodology

2.1. Variable Projection Neural Networks
(VPNNs)

VPs are parameterized orthogonal transformations in-
troduced by Golub and Pereyra [1] to solve separable non-
linear least squares problems:

min
θ

r2(θ) := min
θ

∥∥x− Φ(θ)Φ+(θ)x
∥∥2
2
, (1)

where x ∈ RN is the data to be fitted, and Φ+(θ) stands for
the Moore–Penrose pseudoinverse of the matrix Φ(θ) ∈
RN×n. For a given parameter θ ∈ Rm, the matrix prod-
uct Φ(θ)Φ+(θ) represents the orthogonal projector on the
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linear space spanned by the columns of Φ(θ). The entries
of the matrix {Φ(θ)}i,j = φj(ti; θ) can be defined by a
set of functions {φj(t; θ) | j = 1, . . . , n} sampled at a se-
quence of points t1, t2, . . . , tN . The functions φj(·; θ)’s
are chosen a priori to the problem in question in such a
way that the parameter θ usually represents physical quan-
tities, e.g., attenuation coefficients, calibration parameters,
dominant frequencies, etc. Therefore, VPs provide an in-
terpretable representation of the input x, which motivated
the construction of VPNNs [2].

VPNN is a type of model-driven neural network, where
the design of the NN architecture resembles the solution
to well understood mathematical problems. In fact, the
VPNN integrates a separable non-linear least squares prob-
lem into its first layer that performs a VP operator on the
input data. The VP layer has two modes of operations, its
output could be either the projected signal x̂ = Φ(θ)c or
the coefficients of the projection c = Φ+(θ)x. Note that
both cases are differentiable [1], thus backpropagation can
be used for training [2]. In this work, all the VP layers for-
ward the coefficient vector c of the orthogonal projection
of the input x with respect to a set of parameterized Her-
mite functions φ(·; θ) where θ = (τ, λ). In this case, the
trainable weights of the VP layers are the translation τ and
the dilation λ of the basis functions [2]. Hermite functions
are proved to be well suited to model spikelike waveforms,
such as the QRS complexes [3]. Consequently, the first VP
layer in the proposed network architectures extracts fea-
tures automatically with interpretable layer parameters τ
and λ, which are proportional to the location and the width
of the fitted QRS complexes, respectively.

2.2. Spiking Neural Networks (SNNs)

The family of SNNs is referred to as the third-generation
networks [4], which recently received much attention from
the AI community. The basic computational unit of these
networks are the so-called spiking neurons, which turned
to be a biologically more accurate neuron model compared
to their artificial counterparts. In fact, the activation func-
tions of the SNNs are extended by a temporal dimension
to encode the timing of the propagated spikes.

There are several ways to describe neuronal dynamics,
one of the most commonly used is the so-called leaky
integrate-and-fire (LIF) model. This involves a linear dif-
ferential equation, whose iterative solution can be utilized
to define the output of the LIF neuron [5]. Namely, the
membrane potential ut,n of the nth layer evolves accord-
ing to:

ut,n = τut−1,n · (1− ot−1,n) +
∑
j

wjojt,n−1, (2)

ot,n = H(ut,n − Vth), (3)

where τ is a fixed decay factor, Vth is a predefined thresh-
old, ot,n stands for the binary output, H denotes the Heav-
iside step function, and the sum in Eq. (2) aggregates the
spike outputs received from the LIF neurons of the pre-
vious layer. When the membrane potential exceeds the
threshold Vth, a binary spike is generated, which is fol-
lowed by a soft reset of the membrane potential, i.e. ut,n

is either reduced by τ or reset to zero. Note that the output
of the LIF neuron is fed back to its input, thus it can be in-
terpreted as a recurrent neural network (RNN) whose hid-
den state is the membrane potential. Although, the spik-
ing activity is non-differentiable due to the Heaviside step
function in Eq. (3), the gradient can be approximated as
follows:

∂ot,n
∂ut,n

=
1

a
sign

(
|ut,n − Vth| <

a

2

)
, (4)

where a is a user-defined constant that controls the peak
width and ensures that the integral of the gradient function
is equal to one. In [5], it was shown that Eq. (4) is a proper
approximation to the true gradient which enables learning
with backpropagation.

2.3. VPSNN variations

In contrast to Artificial Neural Networks (ANNs), spik-
ing neurons are communicating with binary spike trains
that supports efficient implementations on target hardware.
In fact, SNN can run faster on neuromorphic devices [6],
since the inference require fewer floating point computa-
tions. Power efficiency is another advantage of SNNs that
originates from the sparse nature of the transmitted binary
spike trains [7]. This motivated us to replace the fully con-
nected ANN block in our previous work [2], and combine
SNNs with VP operators. The latter also serves as a train-
able feature extractor that reduces the dimension of the in-
put data.

The SNNs process data in an event-based manner, where
the information is represented via occurrences of spikes.
However, real-world measurements are usually not en-
coded and stored by spike trains, thus a conversion is
needed. There are various ways to convert input data into
spikes [7] which we choose the simplest one that is direct
input encoding. In this case, the static data are interpreted
as constant currents, i.e., the same features are passed to
the SNN at every time step. In our framework, this can be
implemented in two different ways. If we consider nsteps

number of time steps and repeat the input accordingly, we
can apply either a single or multiple VP operators to the re-
peated input. The corresponding latent feature spaces are
essentially different, which is demonstrated by Fig. 1 a)-
b). Besides the structure of the latent feature space, we
experimented with various other configurations of the VP
and the fully connected spiking layers:
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• Basic VPSNN: a single VP layer whose output is repli-
cated nsteps number of times, and then forwarded to sub-
sequent fully connected SNN layers with LIF activations,
and with a softmax activation at the end. The basic archi-
tecture is depicted by Fig. 1 a), where the optinal scaling
and convolutional layers are turned off.
• Multiple (M)VPSNN: multiple VP layers are connected
in parallel, whose outputs are forwarded to the subsequent
layers. Fig. 1 b) displays this architecture with inactive
scaling and convolutional layers.
• Convolutional VP(C)SNN: same as the basic VPSNN,
but the convolutional layer prior to the SNNs is turned on.
• Temporal VP(T)SNN: same as the basic VPSNN, but the
temporal scaling layer after the VP layer(s) is turned on.
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Figure 1. VPSNN variations: a) single VP layer with
replicated output channels, b) multiple VP layers with con-
catenated output channels.

3. Experimental results

3.1. Dataset

PhysioNet MIT-BIH Arrhythmia Database [8] consists
of 48 two-channel ambulatory ECG recordings. Each
record is with around 30 minutes length and was digitized
with sampling frequency of 360 Hz per channel. Nor-
mal heartbeats are heavily over-represented in the database
which poses a challenge for training classifiers. To mit-
igate this problem, we selected a balanced subset of the
original dataset. More precisely, after preprocessing and
heartbeat segmentation [9], we split the ECG beats into
training (DS1) and test (DS2) sets according to [10].
Heartbeat signals of these sets come from different pa-
tients, thus there is no data leakage between the training
and test phases. Then, we selected all the VEBs from DS1
and DS2 along with an equal number of normal heartbeat
signals as well. This resulted in 4260 plus 4260 heartbeat
signals for training, and 3220 plus 3220 signals for testing.
Only the QRS complexes from lead I, i.e., 100 samples
in the vicinity of the R peaks were inputted to the NNs.

All neural networks were trained and tested on the QRS
complexes of DS1 and DS2, respectively. Therefore, we
expected to have a fair comparison of all the tested NN
architectures.

3.2. Classification performances

A comparative study is performed in order to quan-
tify classification performances of four VPSNN variants
in contrast to five competitor classification models. These
classifiers are namely, a conventional fully connected
ANN, a fully connected SNN, a conventional Convolu-
tional Neural Network (CNN), a Spiking CNN (SCNN)
and a non-spiking VP neural network (VPNN). All the
classifier models are trained and tested using same sets
used for VPSNN variants. Additionally, topology of each
competitor model, is individually tuned in order to achieve
its highest performance. Table 1 summarizes the overall
classification performance obtained by each model on test
set. As it can be seen, VPTSNN outperforms other clas-
sification models with an overall accuracy of 97.16% and
an overall specificity rate of 99.60%. In terms of sensi-
tivity rate, SNN model surpasses other classifiers with an
overall sensitivity rate of 97.45%. VPTSNN obtains sensi-
tivity rate of 94.72% which indicates that more VEB beats
are wrongly detected as normal by VPTSNN in compari-
son with SNN. On the other hand, higher specificity rate
of VPTSNN indicates that fewer normal beats might be
detected as VEB compared to other classifiers.

Table 1. Overall Classification performances of different
NN architectures.

Architecture Acc% Spec% Sens%
ANN 94.32% 95.53% 93.11%
CNN 95.92% 96.09% 95.75%
SNN 95.59% 93.73% 97.45%

SCNN 95.42% 95.31% 95.53%
VPNN 96.65% 96.83% 96.61%

VPSNN 96.61% 99.10% 94.13%
VPTSNN 97.16% 99.60% 94.72%
MVPSNN 94.55% 96.52% 92.58%
VPCSNN 95.61% 98.07% 93.14%

Table 2 lists the total number of parameters of each clas-
sifier model. Moreover, inference cost of each model is de-
fined in terms of total memory size of that is required to be
allocated in a target device for deployment of the model.

As it can be seen in Table 2, the memory allocation sizes
required by VPNN and VPSNN/VPTSNN for inference
are 0.7 kilobytes (KB) and 5.3 KB, respectively. More-
over, VPNN ans VPCSNN can achieve fast forward prop-
agation pass due to few number of floating-point mathe-
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Table 2. Total number of parameters and inference mem-
ory size of different NN architectures.

Architecture # of parameters memory size
ANN 59010 234 KB
CNN 212610 967 KB
SNN 58880 231 KB

SCNN 376704 1.5 MB
VPNN 39 0.7 KB

VPSNN 242 5.3 KB
VPTSNN 242 5.3 KB
MVPSNN 72 2.2 KB
VPCSNN 26 1.1 KB

matical operators in their architecture. In our experiments,
VPCSNN is constructed by a sole convolutional layer and
a single SNN layer resulting in total 26 trainable param-
eters. However, other competitor models require wider
and deeper topology in order to reach their highest per-
formance which results in significantly larger memory al-
location size. Thanks to the highly compact discriminative
latent feature space obtained by the VP layer, stacking of
NN and SNN layers to VP layer results in a shallower and
thinner topology. Thus, there is a tangible reduction in to-
tal number of parameters in VP-based architectures com-
pared to other conventional deep and/or wide models. For
instance, both VPSNN and VPTSNN possess only 242 pa-
rameters. The shallow and thin network topology obtained
by VP-based models, can minimize the inference latency
and computational cost. Therefore, they are easier to be
implemented on neuromorphic device and can be a suit-
able candidate for edge-computing where low power con-
sumption and low bandwidth are the main constraints.

4. Future work

In this paper we presented a novel spiking neural net-
work variant with a thin and shallow architecture. Namely,
VPSNN which is constructed by stacking SNN layers after
VP layer. Experimental results, obtained on binary classi-
fication task of VEB beats, demonstrated the effectiveness
of VPSNN as a lightweight solution for ML assisted edge
computations. As future work, we are planning to imple-
ment VPSNN with FPGA support and investigate applica-
tions in other domains, such as tire sensor signal classifica-
tion [11], and visually evoked potential classification [12].

5. Code Availability

The data and code of this study are openly available at:
https://github.com/KavehSam/VPSNN
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